文章目录
  1. 1. Logistic Regression and Softmax Regression
  2. 2. SVM
  3. 3. Bernoulli and Multinomial Naive Bayes
  4. 4. BP神经网络
  5. 5. Expectation-Maximization and Gaussian Mixture Models
  6. 6. Hidden Markov Model
  7. 7. Latent Dirichlet Allocation
  8. 8. GBRT
  9. 9. To be continued…

  纸上得来终觉浅,光看明白还是不够的,常用算法还是要亲自推导下印象才深刻。请忽略我丑陋的字迹,好久没写过字了-_-!

Logistic Regression and Softmax Regression

    LR and Softmax

SVM

    SVM

Bernoulli and Multinomial Naive Bayes

    NB

BP神经网络

    BP

Expectation-Maximization and Gaussian Mixture Models

    EM and GMM

Hidden Markov Model

    HMM

Latent Dirichlet Allocation

  详见Topic Model-LDA理论篇

GBRT

  详见GBM之GBRT总结

To be continued…

文章目录
  1. 1. Logistic Regression and Softmax Regression
  2. 2. SVM
  3. 3. Bernoulli and Multinomial Naive Bayes
  4. 4. BP神经网络
  5. 5. Expectation-Maximization and Gaussian Mixture Models
  6. 6. Hidden Markov Model
  7. 7. Latent Dirichlet Allocation
  8. 8. GBRT
  9. 9. To be continued…